
Agent-Based Chemical Plume Tracing 
Using Fluid Dynamics 

Dimitri Zarzhitsky', Diana Spears', David Thayer2, and William Spears' 

Department of Computer Science 
Department of Physics and Astronomy 

University of Wyoming, Laramie, WY 82071 
dimzar(Puuyo.edu 

Abstract. This paper presents a rigorous evaluation of a novel, dis- 
tributed chemical plume tracing algorithm. The algorithm is a combi- 
nation of the best aspects of the two most popular predecessors for this 
task. Furthermore, it is based on solid, formal principles from the field of 
fluid mechanics. The algorithm is applied by a network of mobile sensing 
agents (e.g., robots or micro-air vehicles) that sense the ambient fluid 
velocity and chemical concentration, and calculate derivatives. The algo- 
rithm drives the robotic network to the source of the toxic plume, where 
measures can be taken to disable the source emitter. This work is part of 
a much larger effort in research and development of a physics-based ap- 
proach to developing networks of mobile sensing agents for monitoring, 
tracking, reporting and responding to hazardous conditions. 

1 Introduction 

The objective of this research is the development of an effective, efficient, and 
robust distributed search algorithm for a team of robots that  must locate an 
emitter that  is releasing a toxic chemical gas. The basis for this algorithm is a 
physics-based framework for distributed multi-agent control [l]. This framework, 
called physicomimetics or artificial physics (AP), assumes several to hundreds of 
simple, inexpensive mobile robotic agents with limited processing power and a 
small set of on-board sensors. Using AP, the agents will configure into geometric 
lattice formations that are preserved as the robots navigate around obstacles to 
a source location [2]. 

In this paper, we present a novel algorithm for chemical plume tracing (CPT) 
that is built upon the AP framework. The C P T  task consists of finding the 
chemical, tracking the chemical to  its source emitter and, finally, identifying the 
emitter. Here, we focus on the latter two subtasks. Our CPT algorithm combines 
the strengths of the two most popular chemical plume tracing techniques in use 
today. Furthermore, it is founded upon solid theoretical (formal) principles of 
fluid dynamics, which will make further analysis and improvement possible. Our 
algorithm assumes an  AP-maintained lattice which acts as a distributed com- 
putational fluid dynamics (CFD) grid for calculating derivatives of flow-field 
variables, such as fluid velocity and chemical concentration. This paper consists 



of a formal study of the effectiveness of our novel algorithm, including compar- 
isons with the two most popular alternatives on which it is built. To supplement 
the discussion of the underlying theory, we include results from software simula- 
tions that implement the theoretical scenarios we present,. and include realistic 
elements of measurement discretization. 

2 Motivation 

The authors’ goal is to design a search algorithm that scales well to a large 
number of robots, ranging perhaps from ten agents to a thousand and beyond. 
In order to achieve this goal, two things are necessary: a formal theory upon 
which the algorithm is based, and a suitable task that can be used to test the 
algorithm. The task of chemical plume tracing has posed problems for a number 
of years in a variety of manufacturing and military applications. In light of 
the current national concern with security and the possibility of a chemical 
terrorist attack, several private and government agencies have expressed interest 
in updating current techniques used to track hazardous plumes, and improving 
the search strategies used to locate the toxin emitter [3-6]. 

Because the physicomimetics framework relies on application of virtual forces 
to construct and maintain the robotic lattice, physics is the natural choice for 
the theoretical foundation of our work. In particular, the well-studied field of 
fluid physics and mechanics is well-suited for the development and validation of 

There is another advantage of using a physics-based foundation. Computa- 
tional fluid mechanics requires computational meshes for sampling and process- 
ing of flow-field variable values. The lattice arrangements that emerge naturally 
from the physicomimetics framework can be used as computational meshes, thus 
forming a massively parallel system, capable of performing complex computa- 
tions in real time, with the added benefit of resilience to failure, and ability to 
adjust when the environment characteristics change. The natural synergy be- 
tween the different system components translates directly into an improved per- 
formance of the system. For instance, the construction of hexagonal formations 
requires the least amount of communication and sensor information within the 
agent control framework [7]; at the same time, a hexagonal lattice was shown [8] 
to have superior boundary characteristics for solving an important class of fluid 
mechanics problems. 

OUT algorithms. 

3 Related Work 

Current research in the field has been inspired by biological olfactory systems of 
!nhsters z ~ r l  moths [9-12!. The base requirement for any system that attempts 
to trace a chemical plume is of course the ability to sense the presence of the 
chemical agent, as well as its concentration. The best understood and most 
widely applied approach is that of chemotazis, which consists of following a 
local gradient of the chemical concentration within a plume [13,14,11]. While 



chemotaxis is very simple to  perform, it frequently leads to  locations of high 
concentration in the plume that are not the source, such as a corner of a room. 
Furthermore, we have a proof, which we omit here due to space limitations, that 
a chemotaxis search strategy is likely to fail near the emitter’s location, due 
to  the fact that for a typical time-varying Gaussian plume density profile, the 
gradient goes to zero near the distribution’s peak. 

To overcome this problem, another common approach, called anemotaxzs, has 
been developed. An anemotaxis-driven agent measures the direction of the fluid’s 
velocity and navigates “upstream” within the plume [15,14]. Such a strategy is 
successful in problems where the flow has no large-scale turbulence. In general, 
we do not have the luxury of assuming this type of airflow. On the contrary, the 
airflow could have large turbulent eddies that curl and circulate, thus creating 
a region where traveling upwind will result in a cycle, causing the anemotaxis 
technique to fail. 

Early results from applying the solution of fluid dynamic problems to robotic 
systems are reported by Keymeulen and Decuyper [16-181. In this work, a highly 
simplified model of fluid flow was used successfully in simulation to navigate 
a single robot in a semi-dynamic environment; the approach was inspired by 
the fact that fluid flow is a good model of the iterative, local-to-global route 
finding task optimization, since the local pressure fields that are responsible 
for the existence of the stable optimal path are void of local minima. In the 
development of their approach, Keymeulen and Decuyper relied on the concepts 
of a fluid source and sank, which they used to specify the robot’s initial and goal 
locations. In the present work, we also base our method’s development on these 
two concepts, and extensively utilize both mathematical and physical properties 
of these two entities in the verification of our algorithm. 

Work by Balkovsky and Shraiman [19] on the subject of statistical analysis 
of the plume is also relevant. They develop a probability density function having 
a Gaussian form, and use it to develop a simplified model of the chemical plume, 
which is then traversed using an algorithm that takes the probability of the 
source’s location into account. In the development of their algorithm, several 
assumptions were made regarding the type of the flow that the agent is expected 
to  search. In our work we do not assume a particular flow-field, but rather 
establish several general categories of fluid flow and prove mathematically that 
our algorithm performs well in these broad and important categories. 

Research by Parunak and Brueckner [ll] makes a case for analysis of the self- 
organization property in multi-agent systems from the standpoint of entropy and 
the Second Law of Thermodynamics. They develop an analogy between entropy 
in the context of a system’s energetic quality and informational disorder, and 
show how understanding and management of system entropy can be used to 
analyze a multi-agent system. They illustrate the idea by solving an agent coor- 
dination problem with the use of simulated randomly-diffising pheromones. Our 
work complements their thermodynamic approach by looking at the conserva- 
tion properties of‘matter, and improves it by providing a more realistic model 
of information flow within a system. 



A promising approach to  tracking and localizing a target with soft real-time 
constraints is discussed in Horling, et. al. [20]. The major contribution of their 
work is a radar network capable of operating under real-world conditions with 
realistic restrictions of noisy communication channels, limited sensory capabili- 
ties, and restricted computational power. The system however, only allows for 
k e d  sensors and makes use of partially centralized sector and target manager 
agents, introducing local points of failure. In our approach, decisions are made 
in a fully decentralized manner, improving robustness of the entire system. In 
addition, our kamework places no restriction on mobility of either the plume or 
the tracking agents. 

Also of interest is the work of Polycarpou et al. [21], where the notion of 
artscial potential fields is used to  find the goal object (an attractor) while 
avoiding obstacles (repellents). In order to apply potential fields, th6y create a 
map of the environment and the agents then are able to compute virtual forces 
based on the knowledge of the environment. However, such global maps are 
costly to build and mapping errors are a significant problem. The strategy we 
are proposing does not require environment mapping, and works well with the 
local information obtained in a highly distributed manner by the agents. 

4 Computationd, Fluid Dynamics 

Our approach makes use of the methods and concepts developed in the con- 
text of computational fluid dynamics (CFD), so a brief review of the relevant 
material will be useful. Flow of fluids is governed by three fundamental laws: 
the conservation of mass, conservation of momentum (Newton’s Second Law), 
and the conservation of energy [22,23]. There is also an equation that captures 
turbulent effects [24], but for simplicity we omit i t  here. Collectively, these equa- 
tions are known as the Governing Equations. Equations that describe theoretical 
inviscid flows are also known as the Euler equations, while the more complex 
real viscous 00ws are described by the Navier-Stokes equations. These equations 
come in several forms, but we will focus on the conservation form, which is based 
on the time analysis of a differential volume spatially fixed in the flow field [23]. 
For instance, the simplest equation, the conservation of mass, is written as 

aP -- = v . ( p V )  at 
Here, p denotes the mass density of the chemical, V is the fluid’s velocity (col- 
lectively, p and V are known as the flow-field variables), and t denotes time. 
For any real flow of practical interest, an analytical solution of the Govern- 
ing Eguations is impossible to obtain, due to  the inherent non-linearity of the 
fluid dynamic systems. ihus, one ZFD appiGX5 :ci;!acee th,e cr?ntin11011s partial 
derivatives with the corresponding discretized finite-difference approximations, 
and computes the unknown flow-field variables using a computational grid which 
spans the region of interest. Our algorithm takes advantage of the lattice forma- 
tions formed by our robotic agents to sirnukite the cornpfihtional grid: thereby 



allowing the agents to  perform a sophisticated analysis of the flow and make 
navigational decisions based on this analysis. 

Other discretization methods, of which finite-volume and finite-element are 
best known, are also applicable to the AP-driven robotic lattices. However, in 
this paper, we only make use of the finitedifference discretization method be- 
cause of its simple derivation from the Taylor-series expansion of partial deriva- 
tives [22]. For brevity and greater focus, we also ignore the interesting problem 
of boundary conditions, and focus on a theoretically limitless domain. Since we 
are interested in the problem of emitter localization, this simplification does not 
have a significant impact on the solution, as long as the region in which plume 
tracing is performed does not have walls nor obstacles. This limitation will be 
addressed in the later stages of our research. 

The work presented in the following sections deals with the development of 
our physics-based solution to the chemical plume tracing task. It assumes a lat- 
tice of mobile agents with a limited, local view of the plume. The early theoretical 
results have been verified in simulation, and more complex flow Configurations 
are currently being investigated. 

5 Our Fluxotaxis Algorithm 

The RHS of (1) represents the divergence of mass flux within the differential 
volume. Divergence plays a key role in the proposed algorithm; it is therefore 
helpful to  briefly review the basics. Divergence is a convenient way to quantify 
the change of a vector field in space. Although our approach is applicable to  
3D geometries, for greater simplicity, we express the mass flux divergence in 2D 
Cartesian coordinates as 

ap au ap av v .  (pV) = u- + p- + v- + p- ax ax ay ay 
where 

V = us + V j  (3) 

and s and 3 are unit vectors in the x and y coordinate directions, respectively. 
If at some spatial point location P ,  V . (pV) > 0, then it is said that point 
P is a source of p V ,  while V . ( p V )  < 0 indicates a sink of pV. It helps t o  
point out that the product pV is called the mass flux [23], and represents the 
time rate of change of mass flow per unit area; dimensional analysis shows that 
p V  is simply mass/(area. time). The role of this quantity in the CPT task can 
be better understood with the aid of the Divergence Theorem [25] from vector 
calculus: 

V . (pV)dW = (pV) .  d S  (4) J, 45, 
This equation, where W is the control volume and S is the bounding surface of 
the volume, allows us to formally define the intuitive notion that a control volume 
containing a source (e.g., emitter) will have a positive mass flux divergende, while 



a control volume containing a sink will have a negative mass flux divergence. 
. This result serves as our basic criterion for theoretically identifying a chemical 

emitter. To the best of our knowledge, previous criteria for emitter identification 
are purely heuristic, e g ,  [14]. Our method is the first with a solid theoretical 
basis. 

Furthermore, this result is also the basis of our novel plume tracing algorithm, 
which we call fluxcotaxis. With fluxotaxis, the robotic lattice will compute the 
local divergence of mass flux, and will follow its gradient (the direction of steepest 
increase). Mathematically, the gradient being followed is: 

ap au ap av V(V . pV) = V(u- + p- + v- + p-) ax ax ay ay ( 5 )  

Each individual robot independently calculates this flux gradient ( 5 ) .  Due to the 
virtual cohesive forces holding the lattice together, the whole lattice will move in 
the flux gradient direction determined by the majority (with no explicit voting). 

From (2) it is clear that the fluxotaxis algorithm combines information about 
both velocity and chemical density, and the fact that it also encapsulates the 
notion of mass flux, as demonstrated in (4), provides assurance that we will 
find the emitter as opposed to a local density maximum. The following section 
presents several formal proofs in support of this statement. 

6 Fluxotaxis Theory 

Our ultimate objective is to  invent a foolproof mathematical formula that the 
robotic lattice can use to guide it to a chemical source. To date, the fluxotaxis 
formula is our best candidate, although it is not foolproof. With our objective 
in mind, we are currently beginning an in-depth study of the strengths and 
weaknesses of the %motaxis technique. Through such an analysis, we anticipate 
discovering a variant of the fluxotaxis method that will satisfy our objective. 

In this section, we prove a sequence of lemmas that begin to elucidate the 
strengths of the fluxotaxis strategy as a local  de to the location of the chemical 
emitter. In subsequent papers, we will also explore and rectify its weaknesses. 
Here, we present initial versions of lemmas that have restrictive (albeit realistic) 
assumptions; future versions will relax these assumptions. We limit ourselves to 
lemmas because the final theorem is the complete navigation strategy that we 
intend to develop. Each of the following lemmas looks at a realistic scenario and 
demonstrates the performance of a fluxotaxis-managed, 1D robotic swarm. 

All of these lemmas assume a local coordinate system shared by all of the 
rclbcts 5 the rehotk !attire Siirh a shared coordinate =stem is achievable via 
local communication accompanied by coordinate transformations [2,26]. The 
lemmas in this section assume a single coordinate axis for simplicity; generaliza- 
tion to 2D is expected to be straightforward, due to symmetries, and has already 
been verified in software sirnillatiom. 
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6.1 Fluxotaxis in Constant  Velocity 

Constant Velocity Lemma 1. Assume that the following conditions hold: 

Chemical plume has a general Gaussian distribution p(x) = tce-(z-c)2 , cen- 
tered at x = c. 
Lattice position xo is such that xL < xo < XR, where XL, XR are solutions to  
a2p(z)/ax2 = 0 (see Fig. 1); this implies that a2p(z)/ax2 < 0 in the region 
of interest. 
V is constant in magnitude throughout the flow, except right at the emitter 
(x = c), and is an outward radial vector. 

Fig. 1. The Gaussian chemical density distribution and the radial outflow velocity 
profile used in the Constant' Velocity Lemma 1. The shaded area indicates the region 
where plume tracing is carried out by the fluxotaxis agents, and the arrow at z = c 
marks the location of the chemical emitter 

W.l.o.g., assume the existence of Pemt and Pf, such that Pemt is closer to the 
emitter than Pf,. Then execution of one step of the fluxotaxis algorithm implies 
that the agent lattice moves closer to the emitter, or equivalently 

Proof. The problem is symmetric with respect to  the emitter's location (x = c); 
thus it is sufficient to prove the case where XL < Pfa, < Pemt < c. Because V is 
constant, &/ax = 0, and (6) simplifies to 

Since u is a negative constant, the inequality can be simplified to 

Grouping like terms gives 

O >  [$Iem,- [%Ifar 



This is true because, by assumption 2, 

Chemical Density (the highest density is in the middle, right at the emitter): 

A 

Fluid Velocity ( d o r m  radial split at de emitter): 
+++++++- A ++++-++ 

Lattice-computed Divergence of Mass Flux (the maximmn is near the emitter): 

Two-sided Lattice Trace (agents move inward, toward the emitter): 

0 H €I El R R ~ l i l  0 0 H €3 
t -  k +  I 

Fig.2. Simulation results for the Constant Velocity Lemma 1. Individual agents are 
shown as black boxes with the white x in the middle, and the, time trace of the two 
independent agent lattices is shown with boxed numbers indicating the location of the 
lattice at a given time step. The Leroma holds for any initial lattice configuration, and 
fluxotaxis successfully locates the chemical emitter 

Results of a s o h a r e  simulation for this lemma are shown in Fig. 2. In the 
figure, light-colored areas denote large values, and dark-colored areas correspond 
to  small values. The location of the chemical emitter is marked by the triangle 
symbol. The initial positions of two separate agent lattices are at the outer edges 
of the environment, to the left and right of the emitter. During execution of the 
fluxotaxis algorithm, each agent (shown as a black box with a white x in the 
middle) computes the divergence of the mass flux using (2), with the partial 
Cl,ori~.&ives rep!wed hy the second-order accurate central difference approxima- 
tion [27]. This value is recorded by the simulator for analysis purposes, and is 
displayed along with the final agent positions in the screen shot. Observe that 
the resulting divergence “landscape” has a global peak which coincides with the 
location of the emitter, and does not have any local maxima that could trap or 



mislead the agents. There is a small gap in the computed divergence plot near 
the emitter because the agents had terminated their search upon reaching the 
emitter. Each simulated agent (the black box) corresponds to one of the ref- 
erence points (Pemt or Pfar) in the Lemma's proof and, just as in the Lemma, 
there are two agents per lattice. In this simulation, both agent lattices correctly 
moved toward the emitter in the center. In the proof of the Constant Velocity 
Lemma 1, we only considered the case where the lattice was to  the left of the 
emitter; however, a similar proof can be given for the symmetric case, where the 
lattice starts out on the right side of the emitter, and the simulation in Fig. 2 
demonstrates that the algorithm works regardless of the initial position of the 
agent lattice with respect to the chemical source. 

6.2 

Divergence Lemma 1. Fluxotaxis technique will advance the agent lattice to- 
ward a chemical source. 

Fluxotaxis at Source and Sink 

fc------el 
Pfz Pemt 

4 v  4 - -8 4 v .  4.. *. 

(a) Case I (b) Case II 

Fig. 3. Agent lattice coordinate axis orientation and the chemical source location in 
the Divergence Lemma 1 

Proof. As before, assume a general Gaussian chemical plume distribution. W.l.o.g., 
assume the existence of two points Pemt and Pfar, such that Pemt is closer to the 
source than Pf, (see Fig. 3). Two cases result, based on the orientation of the 
lattice coordinate axis. (V is at the bottom of Fig. 3, below the axis.) 

Case I assumes that the direction of the lattice coordinate axis is opposite to 
the direction of the fluid flow, and thus 
1. a2u/ax2 2 0 

3. a2p/ax2  5 o 
2. du/ax > 0; thus 0 2 uemt > ufar 

4. dp/dx > 0 and therefore pemt > pfar 

We need to  prove that the agent will move toward the source, or 

Assumptions 1 and 3 imply 

[$Ifar [Elemt and [%Ifar [%Iemt 
Together with assumptions 2, 4, and algebraic rules, Case I holds. 0 



Case 11 is with the lattice coordinate axis in the same direction as the fluid 
flow, so that both uemt and ufar are non-negative (see Fig. 3), and the previous 
assumptions become 

1. a 2 u / a x 2  2 o 
2. au/ax > 0; thus 0 5 uemt < z~far 
3. a 2 p / a x 2  5 o 
4. a p / a x  < 0 and therefore Pemt > ,ofx 

The agent will turn around and move toward the source if (7) holds. From 
assumption 1 we conclude 

Similarly, assumption 3 yields 

Algebraic application of the remaining assumptions shows that (7) holds. 0 

Chemical Density (the highest density is in the middle, right at the emitter): 

A 

Fluid Velocity (radial flow speeds up away from the emitter): 
C C C c c c  - A -  + - + + - + + +  

Lattice-computed Divergence of Mass Flux (the maximum is near the emitter): 

Two-sided Lattice Trace (agents move inward, toward the emitter): 

Fig.4. Simulation of a fluxotaxis-driven lattice (represented by black boxes) in the 
virinitv of a chemical source from the Divergence Lemma 1. The time trace, denoted 
by the numbered boxes, shows the location of each of the two diierenc aged 'Iattiies 
at sequential time steps in the simulation. Both lattices correctly converge on the true 
location of the chemical emitter 



Software simulation of this Lemma's configuration for, both cases is shown 
in Fig. 4. As before, the flwiotaxis-driven lattice (represented by black boxes 
marked with the white x symbol) begins at the outer edges of the simulated 
world, and moves in toward the emitter, denoted by the triangle in the center. 
The direction of motion is determined by the gradient of the divergence of the 
mass flux, which is computed locally by each agent using a central difference 
approximation of the partial derivatives in (2), and as can been seen from the 
divergence plot, has the maximum value near the emitter's location. Similar to  
the previous simulation, the divergence value right at the emitter is not computed 
by the lattice, since the search terminates as soon as the emitter is found. TWO 
flwiotaxis lattices are shown in the screen shot, and as expected, both of them 
successfully navigate toward the chemical source. As this figure illustrates, the 
initial position of a lattice with respect to the emitter does not impede the 
agents' ability to correctly localize the emitter. 

Divergence Lemma 2 .  Fluxotaxis-controlled agents will move away from a 
chemical sink (see Fig. 5). 

Pfar psnk 

*.. * (V .. t- 4: 4.- 
(a) Case I (b) Case II 

Fig. 5 .  Location of the chemical sink and the two possible agent coordinate axis ori- 
entations in the Divergence Lemma 2 

Proof. As before, assume a general Gaussian chemical plume distribution. W.l.o.g., 
assume the existence of two points PSnk and Pf,,, such that Psnk  is closer to the 
sink than Pfa, (see Fig. 5). To prove that the agents will move away from the 
sink, we must show 

Two cases result, based on the orientation of the lattice coordinate axis. (V is 
at the bottom of Fig. 5, below the axis.) 

Case I occurs when the lattice coordinate axis points in the opposite direction 
to the fluid flow, so that both USnk and ufar are negative (see Fig. 5). For this 
case, the assumptions are 

1. azU/ax2 2 o 

3. a2ppx2  IO 
2. auldx < 0; thus 0 I Usnk > %far 

4. apldx < 0 and therefore Psnk > ,ofar 



The agent will continue moving away from the sink if (8) is true. From assump 
tion 1-we observe that 

raui ~ raui 

Likewise, assumption 3 implies 

The remaining assumptions with algebraic simplification prove that (8) is true. 
0 

Case 11 is when the direction of fluid flow and the lattice coordinate axis are 
the same, so that 

1. a2u/ax2so 

3. a2ppx2 I 0 
2. au  f ax < 0; thus 0 5 Usnk < war 

4. ap  f ax > 0 and therefore Psnk > pfm 

From assumptions 1 and 3 we conclude that 

Algebraic simplification using assumptions 2 and 4 proves Case 11. 0 

Simulation results for this lemma are presented in Fig. 6 .  Confirming the 
theoretical results just obtained, the high-density chemical build-up in the cen- 
ter of the environment does not fool the fluxotaxis algorithm, which correctly 
avoids the local spike in the density by directing the agents (again represented 
by black boxes) to the outer edge of the tracing region, where as can be seen 
fiom the divergence plot, the maximum mass flux divergence occurs. The Di- 
vergence Lemma 2 proves that a fluxotazis-driven agent lattice will escape from 
a sink. However, a simple chemotaxis strategy is easily fooled by sinks, since 
by definition of a sink, ap/ax > 0 going into the sink. The fluxotaxis scheme 
is more robust in this case because it looks at the second order partial of p, 
and also takes the divergence of velocity into account. This simulation provides 
an example of how effectively the fluxotaxis technique merges the chemotaxis 
and anemotaxk CPT methods into a physically sound algorithm with valuable 
self-correcting properties. 

7 Summary and Future Work 

In this paper, we presented a new chemical plume tracing algorithm called flux- 
otaxis, that combines key strength of chemotaxis and ammntaxis - t,he two 



Chemical Density (the highest density is in the center, but the emitter is absent): 

Fluid Velocity (radial flow slows down near the center): 
+ 4 +  j - k  -+ + - - + c t + t C +  

Lattice-Computed Divergence of Mass Flux (the maximum is at the outer edges): 

Two-sided Lattice Trace (agents move outward, away from the center of the sink): 

H B E l € l E J H B R R E l E l U  
4 I I L 

Fig. 6. Simulated performance of the fluxotaxis algorithm within the chemical sink 
from the Divergence Lemma 2. As stated in the proof and visualized in the last time- 
step diagram, the robust fluxotaxis method forces the agent lattice out of the sink, 
even if the lattice starts out directly in the center of the sink, where the chemical 
concentration is at a local maximum. The robust physical foundation of the fluxotaxis 
algorithm allows it to outperform the simpler chemotaxis CPT strategy 

most popular plume tracing methods. We showed that the fluxotaxis algorithm 
has been developed from the fundamental physical principles of fluid flow, and 
that it is able to  overcome a major flaw of chemotaxis. We also built a formal 
mathematical tool set that we will employ to further improve the algorithm. 
In particular, we plan to soon extend the basic fluxotaxis approach outlined 
here to handle turbulent eddies, thus overcoming a major flaw of anemotaxis. 
To experimentally confirm our theoretical results, we will implement the algc- 
rithm on a massively distributed system of simple robotic agents currently under 
development for the task of toxic chemical plume emitter localization. 

The most important contribution of our work is the development of a mobile 
robotic swarm control algorithm that can be analyzed with formal methods, such 
that the agents’ behavior can now be mathematically predicted and guaranteed. 
Some of our work is relevant to  the design and evaluation of artificial worlds, as it 
develops and refines methods for emulation of real-world physics in a simulated 
environment. The distributed nature of the CFD computations performed by 
the robotic swarm may also be of interest to the community. The contribution 
of this research is interdisciplinary and has a wealth of applications in domains 
other than the chemical plume tracing we discussed in this paper. 
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